
Why Force Feedback In Computer Simulators Does Not Work

Over the last decade we have seen dramatic improvements in PC hardware power, quality of
video presentation, number and accuracy of simulation models and yet one thing still fails to
impress. That’s right, force feedback, or in short, FFB device. As a consumer product it has
been around since mid 80‘s and greatly improved along the way. Steering wheels, joysticks,
aircraft yokes - they all seem to push, pull and vibrate but still don’t come close to feeling like
controls in actual car or airplane.

So what is going on here? Is this a problem of design, manufacturing or the whole concept?

I have designed and built a number of FFB systems completely from scratch - both
mechanically and electronically. These steering wheels are 10 times stronger and faster then
consumer ones. These systems have low inertia, low friction and two orders of magnitude
higher force control accuracy than what came before them. They can respond to force
commands and send position data to PC up to 1000 times a second. So do these advanced
wheels feel 10 times more real then the consumer wheel when plugged into a typical PC
simulator? No. They are more powerful, fast and smooth but no more real...

Maybe the problem of realism lies somewhere else but not in helical gears, belt drives and
precision torque control? Maybe somewhere along the whole concept of simulation there is
something that just does not work is it should?

I will try to get down to the very basics of how we model the physical objects in virtual world
and then interact with them from our real world. It is easier to work from an example then
from formulas, so...

Let’s consider a simple road car simulator. Road car - because its dynamic modelling is easier
than aircraft or submarine. Simple - because we would strip everything nonessential from it
leaving just bare minimum - just enough to understand the concept. It won’t need to travel fast
so we take out the engine. It won’t need to slow down quickly so we remove the brakes. We
will not slide into tight corners so we leave just one steerable front wheel. Since the cornering
forces are low, even steering rack would be an overkill so we will leave it out too.

We have one and only push trike simulator!

Apollo has been sent to the Moon with a guidance computer that had 2 Kbytes memory and 2
MHz CPU speed. Surely a modern computer with 4 GBytes memory, four cores running at 3
GHz each and a steering wheel with special profile helical gears and dual motors can simulate
this trike so well that were you to close your eyes you’d feel like you are 3 years old again? In
reality our imaginary simulator feels nothing like real trike. Why?

Let’s start from the beginning and look at how our push trike simulator has been written. The
way most (or maybe all?) simulators are.

We have created precise mechanical model of the frame and all other important parts. We
calculated or measured all the fixed to the frame and and moving masses, their moments of
inertia, locations of their centres of gravity. We have placed constraints on the way these parts
can move, rotate or slide with relation to each other. We have written down formulas tying
together acting forces and movement of these parts including friction, elastic compliance and
viscous damping. We have measured aerodynamic drag, and even lateral forces acting on each
part - including the points where these forces are centred. We have run the tyres on a drum
machine and plotted cornering force and aligning torques at all imaginable loads.

We run the simulator and test drive it. It still feels nowhere like a real thing. Why?!

Let’s see how we handle force feedback in our simulator. Any FFB wheel works in a very
simple way. It receives force demands from the simulator running on a PC and sends back
reports with accurate position data to let simulator know what way and how much we have
turned it. It sounds obvious but let’s point this out again: simulator sends force commands to
the wheel and receives position data back from it.

How do we decide what force to sent to the FFB wheel from our sim? We find the grand total
of all forces acting on the steering axis based on front tyre vertical load, rotation speed,
position angle. How do we know the front tyre position angle in relation to the vehicle?
Simple! We get it from the steering wheel, right? We don’t even have to divide it by the
steering rack reduction ratio since we don’t have a steering rack.

Let’s step back and repeat this again. We send the forces acting on a car front wheels to the
FFB steering wheel and moments later we receive back new position of our car front wheels.
Doesn’t this strike you as strange? Maybe not, so let’s focus on this.

We have offloaded the whole process of simulation of the front wheels and steering rack
dynamics onto the FFB steering wheel. What should have been precision simulation of
acceleration, damping, friction of the front wheels steering movement is now outsourced to a
device with a few plastic cogs and less then 7 bit force accuracy.

But even the best steering wheel is not designed to simulate anything. It just moves when you
ask it to. If you hold it tight, it does not move. That’s all. You might argue that wheel has
some natural moment of inertia and damping and they can be considered scaled down
properties of the front wheels. No, the moment of inertia of any FFB steering wheel is less
than even our simple trike’s steering and front wheel moment of inertia - let alone the inertia of
front wheels and steering rack of actual car even reduced by steering rack gearing.

OK, moment of inertia simulation is pretty obvious - we have two massive front wheels on any
car and they need some good effort to make them accelerate. They have “weight.”

But why damping? Cars don’t have dampers in steering systems. Sure, they don’t but
requirement for damping simulation comes from natural damping in steering rack and existence
of gyroscopic couple - the result of forces acting on a front wheel spinning around horizontal
axis and contact patch moving towards one side of the wheel while cornering or just compliant
suspension (variable camber.) The resulting counterforce is proportional to the speed of
steering wheel rotation. Which in the end is equivalent to damping. Gyroscopic couple
damping effect is proportional to the vehicle travelling speed and is one of the reasons why
steering “stiffens” with higher speeds and motorcycles remain stable at high speeds.

But we have digressed. We have concluded that maybe if steering wheel has some damping
and inertia it can simulate the front wheels for us?

At best simulation of damping in FFB wheels is mediocre. Even worse, no consumer wheel I
know of can simulate inertia. This is due to the fact that it requires very accurate angular
acceleration estimation. This is just not possible with simple encoder even with few thousands
counts per wheel turn.

And now is the worst bit. As soon as you gently place your hands on the wheel its damping
and inertia increase several times. You grab the wheel tighter and suddenly the car has ten
times more massive front tyres. No car in the world has tyres with variable moment of inertia!

So what would be the “right” way of getting around this? How can we simulate the car front
wheels inside the sim? It won’t be a problem if we had all the necessary input data - all the
forces acting on the wheels, their position, moments of inertia, etc - and wouldn’t let anybody
else interfere with the accurate simulation.

Simulated
by

PC software “Simulated”
by

FFB wheel

Remember that we have noted earlier that FFB steering wheel traditionally receives the force
demands from the sim and sends back the wheel position? One way of solving our simulation
problem would be to turn it all on its head and instead send position demand to the FFB wheel and
receive back the force applied by driver. From first glance it does not make sense. But look how the
real car works. It presents you the steering wheel in a certain position and then you apply force
to it in a hope that it will move where you want it to be. Then car then moves the steering
wheel through its tyres according to physics laws. The wheel is happen to be in a certain
position and you apply forces to it to make it change this position.

You control the car by applying forces and not by placing the wheel at a certain angle.
Think about it. You are turning a corner and going a bit wide. What do you do? Do you add
extra 10 degrees to steering? No, you add a little force and the wheel turns a bit more. How
much? You probably have no idea and neither do I.

What if your street car had a wheel that had no force on it when you turn it? In other words
you would control it by the position of the wheel. You probably wouldn’t be able to drive it. But
it would be perfect for any simulator to model because this is how simulators are written to
work.

So once again, modern car presents the steering wheel to the driver and driver applies force to
it to make the car change direction. This is completely the opposite as how FFB devices made
to operate. Can we build such a device? Should it then be called Position Feedback? PFB
wheel?

If you are familiar with industrial automation and controls then you probably already guessed
that ideal system for our sim steering is a servo system with stiff position control where torque
demand from PID loop not only applied to servo motor but also sent back to the sim as force
applied by the human driver.

Our car sim physics update loop works in the following way. The software takes the front
wheels position, adjusts it according to steering rack configuration - in other words scales it
down by gearing ratio - and sends it to the steering system. This now becomes as servo system
new holding setpoint. External force applied by the driver is measured and sent back to the
sim. The sim combines this steering rack force with other known forces acting on front tyres
and then calculates wheels vertical rotation dynamics - angular acceleration based on wheels
moment of inertia, rotational speed, and finally arrives at new wheels position. Which is in
turn sent to our steering device, becomes a new setpoint, new steering force duly arrives back
and everything starts over again.

Perfect harmony. Our push trike sim finally feels as good as a real one.

Can this be done with an ordinary FFB wheel? Yes, to some extent. If you set up a very heavy
spring effect (P component) accompanied by critical damping (D component) then you have
some sort of a rudimentary servo system. Getting the motor torque out and into PC is more
problematic as you can only guess it via displacement from a setpoint (P-component input.)

What is the morale of the story? The simulation software programmers rely on hardware
manufacturers for being part of their system while hardware manufacturers never expected to
be “in the loop” at all. Few people in the industry understand how “the other side” or even
overall system works and there is no available information or discussions on the subject. I
hope someday this will change for the better!

Leo Bodnar, July 2011

Simulated
by

PC software

FFB wheel is
just input/output

